Generalised MGF of the $\kappa - \mu$ extreme distribution and its applications to performance analysis

J. Gong, H. Lee, M. Park, J.W. Choi and J. Kang

The authors formulate the closed-form expressions of the generalised moment generating function (G-MGF) for the $\kappa - \mu$ extreme distribution, which enables one to calculate important metrics of wireless communications systems. The derived formula is utilised to evaluate the performance of communication systems under $\kappa - \mu$ extreme fading channels, such as energy detection in terms of area under the receiver operating characteristic curve and outage probability in interference limited scenarios.

Introduction: The $\kappa - \mu$ extreme distribution was originally introduced in [1] as a particular case of the $\kappa - \mu$ distribution. The $\kappa - \mu$ distribution is a generalised fading distribution model which is defined by the fading parameters κ and μ. As κ increases infinitely and μ converges to 0, the $\kappa - \mu$ distribution characterises an extreme fading condition which is called the $\kappa - \mu$ extreme distribution. The $\kappa - \mu$ extreme distribution is usually used to characterise severe fading conditions such as a parking lot, a gymnasium and enclosed environments [2]. Despite the usefulness of this distribution, however, researches and channel analysis have been done in only a few studies. In [2, 3], outage probability, bit error rate and mean output signal-to-noise ratio (SNR) have been analysed over the $\kappa - \mu$ extreme fading. In [4], energy detection, especially the average detection probability and receiver operating characteristic (ROC) curve, was investigated over the $\kappa - \mu$ extreme fading.

Hence, we newly formulate closed-form expressions of the generalised moment generating function (G-MGF), which is one of the most essential alternative specifications of distribution probability. The G-MGF can be directly utilised in various application scenarios including energy detection, outage probability, physical layer security, average error rate analysis and so on [5, 6]. To the best of the authors’ knowledge, this is the first derivation of the exact closed-form formula for the G-MGF in the $\kappa - \mu$ extreme fading channels. Additionally, the corresponding performance analysis of several applications, related to energy detection and outage probability, is also presented.

G-MGF of the $\kappa - \mu$ extreme distribution: The G-MGF of a random variable X is defined as [5]

$$\phi_X^{(n)}(s) = \mathbb{E}[X^n e^{sX}] = \int_0^\infty x^n e^{sX} f_X(x) \, dx,$$

where $f_X(x)$ is the probability density function (PDF) of X. The PDF of the instantaneous SNR over $\kappa - \mu$ extreme distribution is described as [2]

$$f_X(y) = \frac{2m}{\sqrt{2\pi}} e^{-\frac{2m(\gamma-\gamma_0)}{\sqrt{2}}} I_1\left(\frac{4m}{\sqrt{2}} \sqrt{\frac{\gamma_0}{\gamma}}\right) + \frac{e^{-2m}}{\sqrt{2\pi}} \delta(y),$$

where m denotes fading severity, $I_1(\cdot)$ is modified bessel function [7, Eq. (8.406.1)], and $\delta(\cdot)$ is the Dirac delta function. Now, we can formulate the G-MGF of the $\kappa - \mu$ extreme distribution as below

$$\phi_X^{(n)}(s) = \int_0^\infty y^n e^{sX} f_X(y) \, dy \tag{3}$$

$$= \int_0^\infty y^n e^{\frac{2m}{\sqrt{2\pi}} e^{-\frac{2m(\gamma-\gamma_0)}{\sqrt{2}}} I_1\left(\frac{4m}{\sqrt{2}} \sqrt{\frac{\gamma_0}{\gamma}}\right) + \frac{e^{-2m}}{\sqrt{2\pi}} \delta(y)} \, dy. \tag{4}$$

For $n \geq 1$, the Dirac delta function can be ignored and the latter integral can be reformulated with the aid of [7, Eq. (6.643.2)]. Then, the alternative expression can be also described by using [7, Eq. (9.220.2)] as

$$\phi_X^{(n)}(s) = \frac{2m e^{-2m}}{\sqrt{2\pi}} \int_0^\infty y^n e^{\frac{2m}{\sqrt{2\pi}} e^{-\frac{2m(\gamma-\gamma_0)}{\sqrt{2}}} I_1\left(\frac{4m}{\sqrt{2}} \sqrt{\frac{\gamma_0}{\gamma}}\right) + \frac{e^{-2m}}{\sqrt{2\pi}} \delta(y)} \, dy \tag{5}$$

$$= e^{-2m} n! e^{-\frac{m^2}{2}} \frac{\gamma}{2m-s\gamma} \mathcal{M}_{-n,-1} \left(\frac{4m^2}{2m-s\gamma}\right), \tag{6}$$

where $\mathcal{M}_{-n,-1}(\cdot)$ denotes the Whittaker function [8, Eq. (9.220.2)] and the Kummer confluent hypergeometric function [7, Eq. (13.1.2)], respectively. For $n = 0$, however, we have to formulate the G-MGF with consideration of the Dirac delta function, i.e. the non-nil probability, as

$$\phi_X^{(0)}(s) = e^{-2m} n! e^{-\frac{m^2}{2}} \frac{\gamma}{2m-s\gamma} \mathcal{M}_{-n,-1} \left(\frac{4m^2}{2m-s\gamma}\right) + e^{-2m} \tag{8}$$

$$= e^{-2m} n! e^{-\frac{m^2}{2}} \frac{\gamma}{2m-s\gamma} \mathcal{M}_{-n,-1} \left(\frac{4m^2}{2m-s\gamma}\right). \tag{9}$$

Performance analysis for energy detection: Energy detection is the sensing method of distinguishing the presence or absence of an unknown signal, by comparing the energy of the received signal with a predefined threshold λ [4]. To analyse the performance of energy detection, ROC and area under the ROC curve (AUC) [9] are mainly used as metrics, which are defined by the detection probability P_d and the false alarm probability P_f. The metrics P_d and P_f can be described as [9]

$$P_d(\gamma, \lambda) = Q_d(\sqrt{2\gamma}\sqrt{\lambda}), \tag{10}$$

$$P_f(\lambda) = \frac{\Gamma(u, \lambda/2)}{\Gamma(u)}, \tag{11}$$

where $Q_d(\cdot, \cdot)$ is the generalised Marcum Q-function [10, Eq. (13.1.2)] and u can be obtained through multiplying the one-sided bandwidth by the observing duration. Since the ROC curve depicts P_d according to P_f, we need P_d which can be obtained with the aid of [5, Eq. (14)] as

$$P_d = \sum_{n=0}^\infty \frac{\Gamma(u+n, \lambda/2)}{\Gamma(u+n)} \left|\phi_X^{(n)}(s)\right|_{s=1}.$$

However, ROC curve is not suitable for comparing two energy detectors whose performance curves are crossing each other and not able to encapsulate P_d and P_f at once. Hence, the AUC was proposed as an alternative metric [9]. The AUC is calculated by integrating the area under the ROC curve as

$$\mathcal{T} = \int_0^1 P_d(\gamma, \lambda) dP_f(\lambda). \tag{13}$$

The AUC can be also easily formulated by G-MGF as [5, Eq. (22)]

$$\mathcal{T} = 1 - \sum_{q=0}^{n-1} \frac{\sum_{u=0}^q} \frac{q - u - 1} \frac{q - n} \left(\frac{1}{2}\right) \frac{\Gamma(u+n, \lambda/2)}{\Gamma(u+n)} \left|\phi_X^{(n)}(s)\right|_{s=1}.$$

Outage probability for maximal ratio combining (MRC) systems with interference: In this section, we evaluate the outage probability of L-branch using MRC with N interferences. We assume that the channel of the desired signal is affected by the $\kappa - \mu$ extreme distribution and the interference channels undergo Rayleigh fading. We consider the outage as the case that the signal-to-interference ratio (SIR) goes below a given threshold γ_0. Then, the outage probability can be formulated as

$$P_{out} = Pr(\Gamma < \gamma_0) = 1 - \int_0^\infty F_X(x) f_\Theta(x) \, dx,$$

where Γ is SIR, $F_X(x)$ and $f_\Theta(x)$ are the cumulative density functions of the output interfering signal and the PDF of the desired signal, respectively. Then, the outage probability is evaluated by the
G-MGF as [5, Eq. (28)]

\[P_{\text{out}} = \sum_{l=1}^{N} P_{l} \sum_{m=1}^{2} \frac{1}{(2m)!} \left(\sum_{n=1}^{L} \frac{L}{n_{n}} q_{m} \right) \]

where \(J \) denotes the number of different interfering signals with power \(P_{l}, l = 1, \ldots, N \), \(n_{l} \) is multiplicity of \(P_{l} \), i.e., \(\sum_{n=1}^{J} n_{n} = N \), \(\gamma_{m} \) describes the power of the desired signal at \(m \)th receive antenna, \(\tau(l, L) \) and \(A_{\theta} \) are defined as [5]

\[\tau(l, L) = \left\{ (q_{1}, q_{2}, \ldots, q_{L}) : q_{n} \in \mathbb{N}, \sum_{n=1}^{L} q_{n} = l \right\} \]

\[A_{\theta} = \left(-1 \right)^{l-1} \sum_{\Omega_{l}} \frac{L}{l_{n}} \sum_{i=1}^{J} (n_{i} + q_{i} - 1) \]

\[\times \frac{p_{l} p_{n}}{(P_{l} - P_{n})^{l+n+m}}, \]

where \(\Omega_{l} \) is the set \(\{ (q_{1}, q_{2}, \ldots, q_{L}) : q_{n} \in \mathbb{N}, q_{i} = 0, \sum_{i=1}^{L} q_{i} = l - 1 \} \) and \(\mathbb{N} \) denotes the set of non-negative integers.

Numerical results: In this section, the applications based on the G-MGF, the average AUC and the outage probability, are evaluated over the \(\kappa - \mu \) extreme fading in various conditions.

Fig. 1 shows the average AUC with respect to \(\gamma \) when \(u = 1, 5 \). As can be seen in the Fig. 1, the average AUC increases as \(m \) increases. We can also check that the AUC performance is degraded for higher \(u \).

In Fig. 2, we analyse the outage probability with interference under MRC systems. We assume that the number of receive antennas \(L = 2, 4 \), the number of interfering signal \(N = 4 \) and the number of different interferences \(J = 2 \) with \(n_{1} = 2, n_{2} = 2 \). The corresponding interfering power \(P_{1}, P_{2} \) are 0.1, 0.4, respectively, which are normalised by the threshold \(\gamma_{m} \). Trivially, we can observe that as the number of receive antennas increases, the outage probability decreases. Moreover, Fig. 2 also shows lower outage probability with higher \(m \) parameter.

Conclusions: In this Letter, we have derived novel closed-form formulas of the G-MGF for the \(\kappa - \mu \) extreme distribution. By exploiting the derived formulas, we have analysed energy detection scenarios with AUC curve and evaluated the outage probability of the system using MRC with inferences.

Acknowledgments: This work was supported by a grant-in-aid of the Agency for Defense Development (ADD) in the Republic of Korea as part of the Contract UD170011ED. The work of Hoojin Lee was financially supported by Hansung University.

© The Institution of Engineering and Technology 2018
Submitted: 12 September 2018 E-first: 2 November 2018
doi: 10.1049/el.2018.7020
One or more of the Figures in this Letter are available in colour online.

J. Gong and J. Kang (School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea)
E-mail: kjw7419@kaist.ac.kr
H. Lee (Division of IT Convergence Engineering, Hansung University, Seoul 02876, Republic of Korea)
M. Park and J.W. Choi (The 2nd Research and Development Institute - 1st Directorate, Agency for Defense Development (ADD), Daejeon 34060, Republic of Korea)

References
1. Yacoub, M.D.: 'The \(\kappa - \mu \) distribution and \(\eta - \mu \) distribution', *Antennas Propag. Mag.*, 2007, 8 (2), pp. 68–81